PART 2: PROFIT MAXIMISATION OF FIRMS

Q4: Why doesn't the firm sell at a higher or lower price?

Since the firm is very small relative to the entire market, it is a price taker. As a price taker, the firm will accept the price given by the market demand and supply.

FYI: Such firm is a perfect competitive firm which you will learn in Part 3.

Q1: Explain and illustrate with a revenue-cost diagram how a price-setting firm's supernormal profits shrink but it still earns supernormal profits when **demand falls.**

Figure 1: A decrease in supernormal profits (still > 0) when demand falls

Q2: Explain and illustrate with a revenue-cost diagram how a price setting firm's supernormal profits shrink and it makes a loss when demand falls.

Figure 2: Making losses/subnormal profits when demand falls

Explain and illustrate with a revenue-cost diagram how a firm's supernormal profits shrink and it incurs a loss when **fixed costs increase**.

From Figure 3, a rise in fixed cost will cause average costs to increase from AC_0 to AC_1 . MC and MR do not change when only fixed costs change, MC cuts MR at the same point and equilibrium output and price remain the same at Q_0 and P_0 . But profits have shrunk from P_0C_0AB to losses C_1P_0BX .

Explain and illustrate with a revenue-cost diagram how a firm's supernormal profits increase when the firm's variable costs fall due to a rise in productivity.

From Figure 4, we can see that a fall in variable costs will decrease average costs from AC_0 to AC_1 and marginal costs from MC_0 to MC_1 . These resulted in higher output from Q_0 to Q_1 , lower price from P_0 to P_1 and unit cost decreases from C_0 to C_1 . Profit increases from P_0C_0BA to P_1C_1YX . Consumer surplus increases by P_0P_1XA